Stochastic Geometry of Two-Dimensional Fiber Assemblies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse ‎functions

In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.

متن کامل

An empirical stochastic model for the geometry of two-dimensional crack growth in soil

A model is presented for the fragmentation of drying soil, based on the geometry of two-dimensional crack growth. The model restricts itself to the formation of twodimensional cracks. The pertinent parameters used to generate cracking patterns include those used to characterise crack growth development as a random walk, fragmentation of peds above a certain size threshold and attraction of crac...

متن کامل

On the Formation of Ordered Two-Dimensional Molecular Assemblies

The concept of commensurability of intraassembly planes is developed and its importance in the formation of stable two-dimensional molecular assemblies is discussed. It is argued that it is not enough to examine the matching of cross-sectional areas of different molecular parts (&). Thus, it is important to consider the crystallographic mismatch of intraassembly atomic planes when designing mol...

متن کامل

APPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET

In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.  

متن کامل

Two Counterexamples in Low-dimensional Length Geometry

One of the key properties of the length of a curve is its lower semicontinuity : if a sequence of curves γi converges to a curve γ, then length(γ) ≤ lim inf length(γi). Here the weakest type of pointwise convergence suffices. There are higher-dimensional analogs of this semicontinuity for Riemannian (and even Finsler) metrics. For instance, the Besicovitch inequality (see, e.g., [1] and [4]) im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sen'i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan)

سال: 1986

ISSN: 0371-0580,1880-1994

DOI: 10.4188/transjtmsj.39.5_t67